Shape classification of sunshine mango using machine vision /

This thesis presents the application of machine vision to classify the shape regularity of sunshine mango. The algorithm were successfully developed and programmed for image processing and image acquisition and then the regular and misshapen mangoes were able to classify using discriminant analysis....

Ամբողջական նկարագրություն

Պահպանված է:
Մատենագիտական մանրամասներ
Հիմնական հեղինակ: Nur Athirah Binti Mabasri
Համատեղ հեղինակ: Universiti Malaysia Perlis
Ձևաչափ: Թեզիս Գիրք
Լեզու:English
Հրապարակվել է: Perlis, Malaysia School of Bioprocess Engineering, University Malaysia Perlis 2017
Խորագրեր:
Առցանց հասանելիություն:Click here to view the full text content
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!
Նկարագրություն
Ամփոփում:This thesis presents the application of machine vision to classify the shape regularity of sunshine mango. The algorithm were successfully developed and programmed for image processing and image acquisition and then the regular and misshapen mangoes were able to classify using discriminant analysis. Using the acquired images from mangoes with different shapes, some essential geometrical features such as length, width, perimeter, area, major axis and minor axis were extracted from each image. Four size-shape parameter, area ratio, aspect ratio, circularity and compactness were used to analyse the mangoes between regular and misshapen. Based on discriminant analysis, three size-shape parameter (area ratio, aspect ratio, and circularity) were found to be effective in differentiate the regular and misshapen of mangoes. Overall the algorithm from discriminant analysis were able to classify 74% success rate to differentiate the regular and misshapen mangoes.
Ֆիզիկական նկարագրություն:x, 65 pages illustrations (some color) 2017
Մատենագիտություն:Includes bibliographical references (pages 40-42)