Development of a robust Sn-Cu based lead-free solder paste
This research concentrated on an evolution in lead-free Sn-Cu based solder paste properties for electrical and electronic application and high power electronic devices. The main purposes of this project are listed as the followings; to compare the thermal properties, printability and solderability o...
Guardado en:
Autor principal: | |
---|---|
Autor Corporativo: | |
Formato: | Tesis Software eBook |
Lenguaje: | English |
Publicado: |
Perlis, Malaysia
School of Materials Engineering
2019
|
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | This research concentrated on an evolution in lead-free Sn-Cu based solder paste properties for electrical and electronic application and high power electronic devices. The main purposes of this project are listed as the followings; to compare the thermal properties, printability and solderability of Sn-0.7Cu based solder paste with micro-alloying Ni (Sn-0.7Cu-0.05Ni solder), composite solder (Sn-0.7Cu-0.05Ni-1TiO2) and transient liquid phase soldering Sn-10Cu (TLPS SC10) solder paste; to investigate the as-reflowed microstructure evolution and its effect on mechanical properties of Sn-0.7Cu based solder paste with micro-alloying Ni (Sn-0.7Cu-0.05Ni solder), composite solder (Sn-0.7Cu-0.05Ni-1TiO2) and transient liquid phase soldering Sn-10Cu (TLPS SC10) solder paste; to study the effects of isothermal aging on the bulk solder microstructure, interfacial growth kinetic and mechanical behavior of Sn-0.7Cu based solder paste with micro-alloying Ni (Sn-0.7Cu-0.05Ni solder), composite solder (Sn-0.7Cu-0.05Ni-1TiO2) and transient liquid phase soldering Sn-10Cu (TLPS SC10) solder paste. |
---|---|
Descripción Física: | 1 CD-ROM 12 cm |
Bibliografía: | Includes bibliographical references. |