Feature extraction and selection methods for emotion and stress recognition from natural speech / \c Yogesh Chinnakalai

This thesis aims to develop emotion/stress recognition system by using speech signals. This work mainly focuses on non-linear HOSA features, feature selection and machine learning algorithms that can represent the hidden and the minute information of emotions and stress present in speech signals ; t...

সম্পূর্ণ বিবরণ

সংরক্ষণ করুন:
গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Chinnakalai, Yogesh
সংস্থা লেখক: Universiti Malaysia Perlis
বিন্যাস: গবেষণাপত্র গ্রন্থ
ভাষা:English
প্রকাশিত: Perlis, Malaysia School of Computer and Communication Engineering, Universiti Malaysia Perlis 2017
ট্যাগগুলো: ট্যাগ যুক্ত করুন
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!
LEADER 02122ntm a2200373Ii 4500
001 vtls000137849
003 MY-ArUMP
005 20210731032657.0
008 191112s2017 my a f bm 000 0 eng d
035 |a (OCoLC)1127057969 
035 |a (OCoLC)on1127057969 
039 9 |a 201911210858  |b SS  |y 201911121114  |z SS 
040 |a MYPMP  |b eng  |e rda  |c MYPMP 
049 |a MYPA 
100 0 |a Chinnakalai, Yogesh 
245 1 0 |a Feature extraction and selection methods for emotion and stress recognition from natural speech / \c Yogesh Chinnakalai 
264 1 |a Perlis, Malaysia  |b School of Computer and Communication Engineering, Universiti Malaysia Perlis  |c 2017 
300 |a xv, 112 pages  |b colour illustration  |c 30cm 
336 |a text  |b txt  |2 rdacontent 
337 |a unmediated  |b n  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
502 |a Thesis (Doctor of Philosophy) -- Universiti Malaysia Perlis. School of Computer and Communication Engineering, 2017 
504 |a Includes bibliographical references. 
520 |a This thesis aims to develop emotion/stress recognition system by using speech signals. This work mainly focuses on non-linear HOSA features, feature selection and machine learning algorithms that can represent the hidden and the minute information of emotions and stress present in speech signals ; to investigate and identify HOSA based feature set for efficient speech emotion recognition system ; to develop optimization Based Feature Selection Algorithms (BBPSO1 and BBPSO2) to select the suitable features ; to validate the selected features from the proposed feature selection algorithms in recognizing stress/emotions from speech signals. 
541 |a Gift from Centre for Graduate Studies (Doctor of Philosophy)  |b 2018 
710 2 |a Universiti Malaysia Perlis 
790 1 |a School of Computer and Communication Engineering 
791 1 |a Doctor of Philosophy 
792 1 |a 2017 
942 |2 lcc  |c BK-TD 
949 |a VIRTUAITEM  |d 30000  |f 1  |x 901 
994 |a C0  |b MYPMP 
999 |c 20443  |d 20443 
952 |0 0  |1 0  |2 lcc  |4 0  |7 0  |9 25766  |a PTSFP  |b PTSFP  |c 6  |d 2021-07-31  |r 2021-07-31  |t 1  |w 2021-07-31  |y BK-TD