Tensor voting : a perceptual organization approach to computer vision and machine learning /

"This lecture presents research on a general framework for perceptual organization that was conducted mainly at the Institute for Robotics and Intelligent Systems of the University of Southern California. It is not written as a historical recount of the work, since the sequence of the presentat...

Full description

Saved in:
Bibliographic Details
Main Author: Mordohai, Philippos
Other Authors: Medioni, Gerard
Format: Book
Language:English
Published: San Rafael, Calif. Morgan & Claypool Publishers 2007.
Edition:1st ed.
Series:Synthesis lectures on image, video, and multimedia processing ; #8.
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 02912nam a2200457Ii 4500
001 vtls000139221
005 20210709185417.0
003 MY-ArUMP
008 200210s2007 caua f b 000 0 eng
020 |a 9781598294019  |q (pbk.) 
020 |z 1598291017 
035 |a (OCoLC)1140032449 
035 |a (OCoLC)on1140032449 
039 9 |a 202002111419  |b RAR  |c 202002101636  |d RAR  |y 202002101634  |z RAR 
040 |a MYPMP  |b eng  |e rda  |c MYPMP 
049 |a MYPA 
090 0 0 |a TA1634  |b M834 2007 
100 1 |a Mordohai, Philippos. 
245 1 0 |a Tensor voting :  |b a perceptual organization approach to computer vision and machine learning /  |c Philippos Mordohai and Gerard Medioni. 
250 |a 1st ed. 
264 1 |a San Rafael, Calif.  |b Morgan & Claypool Publishers  |c 2007. 
300 |a ix, 126 pages  |b illustrations  |c 24 cm. 
336 |a text  |b txt  |2 rdacontent 
337 |a unmediated  |b n  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
490 1 |a Synthesis lectures on image, video, and multimedia processing,  |x 1559-8144  |v #8 
500 |a Gift from APEX Knowledge Sdn. Bhd.  
504 |a Includes bibliographical references (pages 115-123). 
520 1 |a "This lecture presents research on a general framework for perceptual organization that was conducted mainly at the Institute for Robotics and Intelligent Systems of the University of Southern California. It is not written as a historical recount of the work, since the sequence of the presentation is not in chronological order. It aims at presenting an approach to a wide range of problems in computer vision and machine learning that is data-driven, local and requires a minimal number of assumptions. The tensor voting framework combines these properties and provides a unified perceptual organization methodology applicable in situations that may seem heterogeneous initially. We show how several are inferred via tensor voting. The work presented here extends the original tensor voting framework with the addition of boundary inference capabilities; a novel re-formulation of the framework applicable to high-dimensional spaces and the development of algorithms for computer vision and machine learning problems. We show complete analysis for some problems, while we briefly outline our approach for other applications and provide pointers to relevant sources."--Jacket. 
541 |c Gift  |a APEX Knowledge Sdn. Bhd.  |c 2019 
650 0 |a Computer vision. 
650 0 |a Machine learning. 
650 0 |a Three-dimensional imaging. 
700 1 |a Medioni, Gerard. 
830 0 |a Synthesis lectures on image, video, and multimedia processing ;  |v #8.  |x 1559-8144 
942 |2 lcc  |c BK-OS 
949 |a VIRTUAITEM  |d 30000  |f 1  |x 1  |6 054649 
951 |a Hadiah 
994 |a C0  |b MYPMP 
999 |c 3706  |d 3706 
952 |0 0  |1 0  |2 lcc  |4 0  |6 TA1634 M834 02007  |7 0  |9 4253  |a PTSFP  |b PTSFP  |c 1  |d 2021-07-09  |o  TA 1634 M834 2007  |p 054649  |r 2021-07-09  |t 1  |w 2021-07-09  |y BK-OS