Belief functions: Theory and applications : Proceedings of the 2nd International conference on belief functions, Compiègne, France 9-11 May 2012 /

<p>The theory of belief functions, also known as evidence theory or Dempster-Shafer theory, was first introduced by Arthur P. Dempster in the context of statistical inference, and was later developed by Glenn Shafer as a general framework for modeling epistemic uncertainty. These early contrib...

Full description

Saved in:
Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Masson, Marie-Hélène, Denoeux, Thierry
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2012.
Series:Advances in Intelligent and Soft Computing 164
Subjects:
Online Access:Click here to view the full text content
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 02791nam a2200385 i 4500
001 vtls000105643
003 MY-ArUMP
005 20210731152123.0
006 m fo d
007 cr nn 008mamaa
008 121130s2012 gw | fs |||| 0|eng d
020 |a 9783642294617 
039 9 |a 201309191048  |b SMI  |c 201211302206  |d NY  |y 201211141229  |z SMR 
040 |a MYPMP  |b eng  |c MYPMP  |e rda 
245 1 0 |a Belief functions: Theory and applications :  |b Proceedings of the 2nd International conference on belief functions, Compiègne, France 9-11 May 2012 /  |c edited by Thierry Denoeux, Marie-Hélène Masson. 
264 1 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2012. 
300 |a 1 online resource (XII, 444 pages)  |b 96 illustration, 54 illustration in colour, digital. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Advances in Intelligent and Soft Computing  |x 1867-5662  |v 164 
520 |a <p>The theory of belief functions, also known as evidence theory or Dempster-Shafer theory, was first introduced by Arthur P. Dempster in the context of statistical inference, and was later developed by Glenn Shafer as a general framework for modeling epistemic uncertainty. These early contributions have been the starting points of many important developments, including the Transferable Belief Model and the Theory of Hints. The theory of belief functions is now well established as a general framework for reasoning with uncertainty, and has well understood connections to other frameworks such as probability, possibility and imprecise probability theories.</p><p> </p><p>This volume contains the proceedings of the 2<sup>nd</sup> International Conference on Belief Functions that was held in Compiègne, France on 9-11 May 2012. It gathers 51 contributions describing recent developments both on theoretical issues (including approximation methods, combination rules, continuous belief functions, graphical models and independence concepts) and applications in various areas including classification, image processing, statistics and intelligent vehicles.</p><p> </p><p><p> </p> 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
700 1 |a Masson, Marie-Hélène. 
700 1 |a Denoeux, Thierry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642294600 
830 0 |a Advances in Intelligent and Soft Computing  |x 1867-5662  |v 164 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-29461-7  |y Click here to view the full text content 
942 |2 lcc  |c BK-EBOOK 
949 |a VIRTUAITEM  |d 10011  |f 1  |x 9 
999 |c 48910  |d 48910 
952 |0 0  |1 0  |2 lcc  |4 0  |7 0  |9 44549  |a FSGM  |b FSGM  |d 2021-07-31  |l 0  |r 2021-07-31  |t 1  |w 2021-07-31  |y BK-EBOOK