Numerical analysis of vibrations of structures under moving inertial load /

Moving inertial loads are applied to structures in civil engineering, robotics, and mechanical engineering. Some fundamental books exist, as well as thousands of research papers. Well known is the book by L. Frýba, Vibrations of Solids and Structures Under Moving Loads, which describes almost all pr...

Full description

Saved in:
Bibliographic Details
Main Author: Bajer, Czesław I. (Author)
Corporate Author: SpringerLink (Online service)
Other Authors: Dyniewicz, Bartłomiej
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2012.
Series:Lecture Notes in Applied and Computational Mechanics 65
Subjects:
Online Access:Click here to view the full text content
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 02857nam a2200421 i 4500
001 vtls000105654
003 MY-ArUMP
005 20210731152131.0
006 m fo d
007 cr nn 008mamaa
008 121130s2012 gw | fs |||| 0|eng d
020 |a 9783642295485 
039 9 |a 201309191037  |b SMI  |c 201211302209  |d NY  |y 201211141229  |z SMR 
040 |a MYPMP  |b eng  |c MYPMP  |e rda 
100 1 |a Bajer, Czesław I.  |e author 
245 1 0 |a Numerical analysis of vibrations of structures under moving inertial load /  |c by Czesław I. Bajer, Bartłomiej Dyniewicz. 
264 1 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2012. 
300 |a 1 online resource (XII, 284 pages)  |b 192 illustration, 99 illustration in colour, digital. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Lecture Notes in Applied and Computational Mechanics  |x 1613-7736  |v 65 
520 |a Moving inertial loads are applied to structures in civil engineering, robotics, and mechanical engineering. Some fundamental books exist, as well as thousands of research papers. Well known is the book by L. Frýba, Vibrations of Solids and Structures Under Moving Loads, which describes almost all problems concerning non-inertial loads.<br>This book presents broad description of numerical tools successfully applied to structural dynamic analysis. Physically we deal with non-conservative systems. The discrete approach formulated with the use of the classical finite element method results in elemental matrices, which can be directly added to global structure matrices. A more general approach is carried out with the space-time finite element method. In such a case, a trajectory of the moving concentrated parameter in space and time can be simply defined.<br>We consider structures described by pure hyperbolic differential equations such as strings and structures described by hyperbolic-parabolic differential equations such as beams and plates. More complex structures such as frames, grids, shells, and three-dimensional objects, can be treated with the use of the solutions given in this book. 
650 0 |a Engineering. 
650 0 |a Mechanics. 
650 0 |a Mechanics, Applied. 
650 0 |a Mechanical engineering. 
700 1 |a Dyniewicz, Bartłomiej. 
700 1 |a Bajer, Czesław I. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642295478 
830 0 |a Lecture Notes in Applied and Computational Mechanics  |x 1613-7736  |v 65 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-29548-5  |y Click here to view the full text content 
942 |2 lcc  |c BK-EBOOK 
949 |a VIRTUAITEM  |d 10011  |f 1  |x 9 
999 |c 49073  |d 49073 
952 |0 0  |1 0  |2 lcc  |4 0  |7 0  |9 44710  |a FSGM  |b FSGM  |d 2021-07-31  |l 0  |r 2021-07-31  |t 1  |w 2021-07-31  |y BK-EBOOK