Design of experiments in nonlinear models : asymptotic normality, optimality criteria and small-sample properties /

Design of Experiments in Nonlinear Models: Asymptotic Normality, Optimality Criteria and Small-Sample Properties provides a comprehensive coverage of the various aspects of experimental design for nonlinear models. The book contains original contributions to the theory of optimal experiments that wi...

Full beskrivning

Sparad:
Bibliografiska uppgifter
Huvudupphovsman: Pronzato, Luc (Författare, medförfattare)
Institutionell upphovsman: SpringerLink (Online service)
Övriga upphovsmän: Pázman, Andrej
Materialtyp: E-bok
Språk:English
Publicerad: New York, NY Springer New York 2013.
Serie:Lecture Notes in Statistics 212
Ämnen:
Länkar:Click here to view the full text content
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!
LEADER 02962nam a2200397 i 4500
001 vtls000110532
003 MY-ArUMP
005 20210731152330.0
006 m fo d
007 cr nn 008mamaa
008 131031s2013 xxu| fs |||| 0|eng d
020 |a 9781461463634 
039 9 |a 201404231036  |b SMI  |c 201310311138  |d VLOAD  |y 201310081625  |z NY 
040 |a MYPMP  |b eng  |c MYPMP  |e rda 
100 1 |a Pronzato, Luc.  |e author 
245 1 0 |a Design of experiments in nonlinear models :  |b asymptotic normality, optimality criteria and small-sample properties /  |c by Luc Pronzato, Andrej Pazman. 
264 1 |a New York, NY  |b Springer New York  |c 2013. 
300 |a 1 online resource (XV, 399 pages) 56 illustration, 37 illustration in colour. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Statistics  |x 0930-0325  |v 212 
520 |a Design of Experiments in Nonlinear Models: Asymptotic Normality, Optimality Criteria and Small-Sample Properties provides a comprehensive coverage of the various aspects of experimental design for nonlinear models. The book contains original contributions to the theory of optimal experiments that will interest students and researchers in the field. Practitionners motivated by applications will find valuable tools to help them designing their experiments.  The first three chapters expose the connections between the asymptotic properties of estimators in parametric models and experimental design, with more emphasis than usual on some particular aspects like the estimation of a nonlinear function of the model parameters, models with heteroscedastic errors, etc. Classical optimality criteria based on those asymptotic properties are then presented thoroughly in a special chapter.  Three chapters are dedicated to specific issues raised by nonlinear models. The construction of design criteria derived from non-asymptotic considerations (small-sample situation) is detailed. The connection between design and identifiability/estimability issues is investigated. Several approaches are presented to face the problem caused by the dependence of an optimal design on the value of the parameters to be estimated.  A survey of algorithmic methods for the construction of optimal designs is provided. 
650 0 |a Statistics. 
700 1 |a Pázman, Andrej. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition  |z 9781461463627 
830 0 |a Lecture Notes in Statistics  |x 0930-0325  |v 212 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-6363-4  |y Click here to view the full text content 
942 |2 lcc  |c BK-EBOOK 
949 |a VIRTUAITEM  |d 10011  |f 1  |x 9 
950 |a Mathematics and Statistics (Springer-11649) 
999 |c 52107  |d 52107 
952 |0 0  |1 0  |2 lcc  |4 0  |7 0  |9 47448  |a FSGM  |b FSGM  |d 2021-07-31  |l 0  |r 2021-07-31  |t 1  |w 2021-07-31  |y BK-EBOOK