Hidden harmony- geometric fantasies : the rise of complex function theory /

Hidden Harmony-Geometric Fantasies describes the history of complex function theory from its origins to 1914, when the essential features of the modern theory were in place. It is the first history of mathematics devoted to complex function theory, and it draws on a wide range of published and unpub...

Descripció completa

Guardat en:
Dades bibliogràfiques
Autor principal: Bottazzini, Umberto (Autor)
Autor corporatiu: SpringerLink (Online service)
Altres autors: Gray, Jeremy
Format: eBook
Idioma:English
Publicat: New York, NY Springer New York 2013.
Col·lecció:Sources and Studies in the History of Mathematics and Physical Sciences
Matèries:
Accés en línia:Click here to view the full text content
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
LEADER 03179nam a2200433 i 4500
001 vtls000110424
003 MY-ArUMP
005 20210731152331.0
006 m fo d
007 cr nn 008mamaa
008 131031s2013 xxu| fs |||| 0|eng d
020 |a 9781461457251 
039 9 |a 201404070953  |b SMI  |c 201310311120  |d VLOAD  |y 201310081622  |z NY 
040 |a MYPMP  |b eng  |c MYPMP  |e rda 
100 1 |a Bottazzini, Umberto.  |e author 
245 1 0 |a Hidden harmony- geometric fantasies :  |b the rise of complex function theory /  |c by Umberto Bottazzini, Jeremy Gray. 
264 1 |a New York, NY  |b Springer New York  |c 2013. 
300 |a 1 online resource (XVII, 848 pages) 38 illustration, 2 illustration in colour. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Sources and Studies in the History of Mathematics and Physical Sciences 
520 |a Hidden Harmony-Geometric Fantasies describes the history of complex function theory from its origins to 1914, when the essential features of the modern theory were in place. It is the first history of mathematics devoted to complex function theory, and it draws on a wide range of published and unpublished sources. In addition to an extensive and detailed coverage of the three founders of the subject-Cauchy, Riemann, and Weierstrass-it looks at the contributions of great mathematicians from d'Alembert to Poincaré, and Laplace to Weyl. Select chapters examine the rise and importance of elliptic function theory, differential equations in the complex domain, geometric function theory, and the early years of complex function theory in several variables. Unique emphasis has been placed on the creation of a textbook tradition in complex analysis by considering some seventy textbooks in nine different languages. This book is not a mere sequence of disembodied results and theories, but offers a comprehensive picture of the broad cultural and social context in which the main players lived and worked by paying attention to the rise of mathematical schools and of contrasting national traditions. This work is unrivaled for its breadth and depth, both in the core theory and its implications for other fields of mathematics. It is a major resource for professional mathematicians as well as advanced undergraduate and graduate students and anyone studying complex function theory. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Functions of complex variables. 
650 0 |a Number theory. 
700 1 |a Gray, Jeremy. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition  |z 9781461457244 
830 0 |a Sources and Studies in the History of Mathematics and Physical Sciences 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-5725-1  |y Click here to view the full text content 
942 |2 lcc  |c BK-EBOOK 
949 |a VIRTUAITEM  |d 10011  |f 1  |x 9 
950 |a Mathematics and Statistics (Springer-11649) 
999 |c 52113  |d 52113 
952 |0 0  |1 0  |2 lcc  |4 0  |7 0  |9 47454  |a FSGM  |b FSGM  |d 2021-07-31  |l 0  |r 2021-07-31  |t 1  |w 2021-07-31  |y BK-EBOOK