Drinfeld moduli schemes and automorphic forms : the theory of elliptic modules with applications /

Drinfeld Moduli Schemes and Automorphic Forms: The Theory of Elliptic Modules with Applications is based on the author's original work establishing the correspondence between ell-adic rank r Galois representations and automorphic representations of GL(r) over a function field, in the local case...

Full description

Saved in:
Bibliographic Details
Main Author: Flicker, Yuval Z. (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: New York, NY Springer New York 2013.
Series:SpringerBriefs in Mathematics
Subjects:
Online Access:Click here to view the full text content
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 02549nam a2200421 i 4500
001 vtls000110440
003 MY-ArUMP
005 20210731152333.0
006 m fo d
007 cr nn 008mamaa
008 131031s2013 xxu| fs |||| 0|eng d
020 |a 9781461458883 
039 9 |a 201404071001  |b SMI  |c 201310311123  |d VLOAD  |y 201310081622  |z NY 
040 |a MYPMP  |b eng  |c MYPMP  |e rda 
100 1 |a Flicker, Yuval Z.  |e author 
245 1 0 |a Drinfeld moduli schemes and automorphic forms :  |b the theory of elliptic modules with applications /  |c by Yuval Z. Flicker. 
264 1 |a New York, NY  |b Springer New York  |c 2013. 
300 |a 1 online resource (V, 150 pages) 5 illustration. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics  |x 2191-8198 
520 |a Drinfeld Moduli Schemes and Automorphic Forms: The Theory of Elliptic Modules with Applications is based on the author's original work establishing the correspondence between ell-adic rank r Galois representations and automorphic representations of GL(r) over a function field, in the local case, and, in the global case, under a restriction at a single place. It develops Drinfeld's theory of elliptic modules, their moduli schemes and covering schemes, the simple trace formula, the fixed point formula, as well as the congruence relations and a "simple" converse theorem, not yet published anywhere. This version, based on a recent course taught by the author at The Ohio State University, is updated with references to research that has extended and developed the original work. The use of the theory of elliptic modules in the present work makes it accessible to graduate students, and it will serve as a valuable resource to facilitate an entrance to this fascinating area of mathematics. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Topological groups. 
650 0 |a Number theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition  |z 9781461458876 
830 0 |a SpringerBriefs in Mathematics  |x 2191-8198 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-5888-3  |y Click here to view the full text content 
942 |2 lcc  |c BK-EBOOK 
949 |a VIRTUAITEM  |d 10011  |f 1  |x 9 
950 |a Mathematics and Statistics (Springer-11649) 
999 |c 52163  |d 52163 
952 |0 0  |1 0  |2 lcc  |4 0  |7 0  |9 47504  |a FSGM  |b FSGM  |d 2021-07-31  |l 0  |r 2021-07-31  |t 1  |w 2021-07-31  |y BK-EBOOK