Temporal patterns of communication in social networks /

The main interest of this research has been in understanding and characterizing large networks of human interactions as continuously changing objects. In fact, although many real social networks are dynamic networks whose elements and properties continuously change over time, traditional approaches...

Volledige beschrijving

Bewaard in:
Bibliografische gegevens
Hoofdauteur: Miritello, Giovanna (Auteur)
Coauteur: SpringerLink (Online service)
Formaat: E-boek
Taal:English
Gepubliceerd in: Heidelberg Springer International Publishing 2013.
Reeks:Springer Theses, Recognizing Outstanding Ph.D. Research
Onderwerpen:
Online toegang:Click here to view the full text content
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!
LEADER 03083nam a2200397 i 4500
001 vtls000111063
003 MY-ArUMP
005 20210731152344.0
006 m fo d
007 cr nn 008mamaa
008 131031s2013 gw | fs |||| 0|eng d
020 |a 9783319001104 
039 9 |a 201406111511  |b SMI  |c 201310311305  |d VLOAD  |y 201310081643  |z NY 
040 |a MYPMP  |b eng  |c MYPMP  |e rda 
100 1 |a Miritello, Giovanna.  |e author 
245 1 0 |a Temporal patterns of communication in social networks /  |c by Giovanna Miritello. 
264 1 |a Heidelberg  |b Springer International Publishing  |c 2013. 
300 |a 1 online resource (XIV, 153 pages) 43 illustration. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research  |x 2190-5053 
520 |a The main interest of this research has been in understanding and characterizing large networks of human interactions as continuously changing objects. In fact, although many real social networks are dynamic networks whose elements and properties continuously change over time, traditional approaches to social network analysis are essentially static, thus neglecting all temporal aspects. Specifically, we have investigated the role that temporal patterns of human interaction play in three main fields of social network analysis and data mining: characterization of time (or attention) allocation in social networks, prediction of link decay/persistence, and information spreading. In order to address this we analyzed large anonymized data sets of phone call communication traces over long periods of time. Access to these observations was granted by Telefonica Research, Spain. The findings that emerge from our research indicate that the observed heterogeneities and correlations of human temporal patterns of interaction significantly affect the traditional view of social networks, shifting from a very steady to a highly complex entity. Since structure and dynamics are tightly coupled, they cannot be disentangled in the analysis and modeling of human behavior, though traditional models seek to do so. Our results impact not only the way in which social network are traditionally characterized, but more importantly also the understanding and modeling phenomena such as group formation, spread of epidemics, and the dissemination of ideas, opinions and information. 
650 0 |a Physics. 
650 0 |a Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition  |z 9783319001098 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research  |x 2190-5053 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-00110-4  |y Click here to view the full text content 
942 |2 lcc  |c BK-EBOOK 
949 |a VIRTUAITEM  |d 10011  |f 1  |x 9 
950 |a Physics and Astronomy (Springer-11651) 
999 |c 52393  |d 52393 
952 |0 0  |1 0  |2 lcc  |4 0  |7 0  |9 47733  |a FSGM  |b FSGM  |d 2021-07-31  |l 0  |r 2021-07-31  |t 1  |w 2021-07-31  |y BK-EBOOK