Compression schemes for mining large datasets : a machine learning perspective /
As data mining algorithms are typically applied to sizable volumes of high-dimensional data, these can result in large storage requirements and inefficient computation times. This unique text/reference addresses the challenges of data abstraction generation using a least number of database scans, co...
محفوظ في:
المؤلفون الرئيسيون: | , , |
---|---|
مؤلف مشترك: | |
التنسيق: | كتاب الكتروني |
اللغة: | English |
منشور في: |
London
Springer London Imprint: Springer,
2013.
|
سلاسل: | Advances in Computer Vision and Pattern Recognition,
|
الموضوعات: | |
الوصول للمادة أونلاين: | Click here to view the full text content |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
جدول المحتويات:
- Introduction
- Data Mining Paradigms
- Run-Length Encoded Compression Scheme
- Dimensionality Reduction by Subsequence Pruning
- Data Compaction through Simultaneous Selection of Prototypes and Features
- Domain Knowledge-Based Compaction
- Optimal Dimensionality Reduction
- Big Data Abstraction through Multiagent Systems
- Intrusion Detection Dataset: Binary Representation.