Compression schemes for mining large datasets : a machine learning perspective /
As data mining algorithms are typically applied to sizable volumes of high-dimensional data, these can result in large storage requirements and inefficient computation times. This unique text/reference addresses the challenges of data abstraction generation using a least number of database scans, co...
Wedi'i Gadw mewn:
Prif Awduron: | , , |
---|---|
Awdur Corfforaethol: | |
Fformat: | eLyfr |
Iaith: | English |
Cyhoeddwyd: |
London
Springer London Imprint: Springer,
2013.
|
Cyfres: | Advances in Computer Vision and Pattern Recognition,
|
Pynciau: | |
Mynediad Ar-lein: | Click here to view the full text content |
Tagiau: |
Ychwanegu Tag
Dim Tagiau, Byddwch y cyntaf i dagio'r cofnod hwn!
|
Tabl Cynhwysion:
- Introduction
- Data Mining Paradigms
- Run-Length Encoded Compression Scheme
- Dimensionality Reduction by Subsequence Pruning
- Data Compaction through Simultaneous Selection of Prototypes and Features
- Domain Knowledge-Based Compaction
- Optimal Dimensionality Reduction
- Big Data Abstraction through Multiagent Systems
- Intrusion Detection Dataset: Binary Representation.