Compression schemes for mining large datasets : a machine learning perspective /

As data mining algorithms are typically applied to sizable volumes of high-dimensional data, these can result in large storage requirements and inefficient computation times. This unique text/reference addresses the challenges of data abstraction generation using a least number of database scans, co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ravindra Babu, T. (VerfasserIn), Narasimha Murty, M. (VerfasserIn), Subrahmanya, S.V (VerfasserIn)
Körperschaft: SpringerLink (Online service)
Format: E-Book
Sprache:English
Veröffentlicht: London Springer London Imprint: Springer, 2013.
Schriftenreihe:Advances in Computer Vision and Pattern Recognition,
Schlagworte:
Online Zugang:Click here to view the full text content
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Inhaltsangabe:
  • Introduction
  • Data Mining Paradigms
  • Run-Length Encoded Compression Scheme
  • Dimensionality Reduction by Subsequence Pruning
  • Data Compaction through Simultaneous Selection of Prototypes and Features
  • Domain Knowledge-Based Compaction
  • Optimal Dimensionality Reduction
  • Big Data Abstraction through Multiagent Systems
  • Intrusion Detection Dataset: Binary Representation.