Compression schemes for mining large datasets : a machine learning perspective /

As data mining algorithms are typically applied to sizable volumes of high-dimensional data, these can result in large storage requirements and inefficient computation times. This unique text/reference addresses the challenges of data abstraction generation using a least number of database scans, co...

Deskribapen osoa

Gorde:
Xehetasun bibliografikoak
Egile Nagusiak: Ravindra Babu, T. (Egilea), Narasimha Murty, M. (Egilea), Subrahmanya, S.V (Egilea)
Erakunde egilea: SpringerLink (Online service)
Formatua: eBook
Hizkuntza:English
Argitaratua: London Springer London Imprint: Springer, 2013.
Saila:Advances in Computer Vision and Pattern Recognition,
Gaiak:
Sarrera elektronikoa:Click here to view the full text content
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
Aurkibidea:
  • Introduction
  • Data Mining Paradigms
  • Run-Length Encoded Compression Scheme
  • Dimensionality Reduction by Subsequence Pruning
  • Data Compaction through Simultaneous Selection of Prototypes and Features
  • Domain Knowledge-Based Compaction
  • Optimal Dimensionality Reduction
  • Big Data Abstraction through Multiagent Systems
  • Intrusion Detection Dataset: Binary Representation.