Compression schemes for mining large datasets : a machine learning perspective /

As data mining algorithms are typically applied to sizable volumes of high-dimensional data, these can result in large storage requirements and inefficient computation times. This unique text/reference addresses the challenges of data abstraction generation using a least number of database scans, co...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Ravindra Babu, T. (Auteur), Narasimha Murty, M. (Auteur), Subrahmanya, S.V (Auteur)
Collectivité auteur: SpringerLink (Online service)
Format: eBook
Langue:English
Publié: London Springer London Imprint: Springer, 2013.
Collection:Advances in Computer Vision and Pattern Recognition,
Sujets:
Accès en ligne:Click here to view the full text content
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Table des matières:
  • Introduction
  • Data Mining Paradigms
  • Run-Length Encoded Compression Scheme
  • Dimensionality Reduction by Subsequence Pruning
  • Data Compaction through Simultaneous Selection of Prototypes and Features
  • Domain Knowledge-Based Compaction
  • Optimal Dimensionality Reduction
  • Big Data Abstraction through Multiagent Systems
  • Intrusion Detection Dataset: Binary Representation.