Compression schemes for mining large datasets : a machine learning perspective /

As data mining algorithms are typically applied to sizable volumes of high-dimensional data, these can result in large storage requirements and inefficient computation times. This unique text/reference addresses the challenges of data abstraction generation using a least number of database scans, co...

תיאור מלא

שמור ב:
מידע ביבליוגרפי
Main Authors: Ravindra Babu, T. (Author), Narasimha Murty, M. (Author), Subrahmanya, S.V (Author)
מחבר תאגידי: SpringerLink (Online service)
פורמט: ספר אלקטרוני
שפה:English
יצא לאור: London Springer London Imprint: Springer, 2013.
סדרה:Advances in Computer Vision and Pattern Recognition,
נושאים:
גישה מקוונת:Click here to view the full text content
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!
תוכן הענינים:
  • Introduction
  • Data Mining Paradigms
  • Run-Length Encoded Compression Scheme
  • Dimensionality Reduction by Subsequence Pruning
  • Data Compaction through Simultaneous Selection of Prototypes and Features
  • Domain Knowledge-Based Compaction
  • Optimal Dimensionality Reduction
  • Big Data Abstraction through Multiagent Systems
  • Intrusion Detection Dataset: Binary Representation.