Compression schemes for mining large datasets : a machine learning perspective /

As data mining algorithms are typically applied to sizable volumes of high-dimensional data, these can result in large storage requirements and inefficient computation times. This unique text/reference addresses the challenges of data abstraction generation using a least number of database scans, co...

Cijeli opis

Spremljeno u:
Bibliografski detalji
Glavni autori: Ravindra Babu, T. (Autor), Narasimha Murty, M. (Autor), Subrahmanya, S.V (Autor)
Autor kompanije: SpringerLink (Online service)
Format: e-knjiga
Jezik:English
Izdano: London Springer London Imprint: Springer, 2013.
Serija:Advances in Computer Vision and Pattern Recognition,
Teme:
Online pristup:Click here to view the full text content
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!
Sadržaj:
  • Introduction
  • Data Mining Paradigms
  • Run-Length Encoded Compression Scheme
  • Dimensionality Reduction by Subsequence Pruning
  • Data Compaction through Simultaneous Selection of Prototypes and Features
  • Domain Knowledge-Based Compaction
  • Optimal Dimensionality Reduction
  • Big Data Abstraction through Multiagent Systems
  • Intrusion Detection Dataset: Binary Representation.