Compression schemes for mining large datasets : a machine learning perspective /

As data mining algorithms are typically applied to sizable volumes of high-dimensional data, these can result in large storage requirements and inefficient computation times. This unique text/reference addresses the challenges of data abstraction generation using a least number of database scans, co...

Полное описание

Сохранить в:
Библиографические подробности
Главные авторы: Ravindra Babu, T. (Автор), Narasimha Murty, M. (Автор), Subrahmanya, S.V (Автор)
Соавтор: SpringerLink (Online service)
Формат: eКнига
Язык:English
Опубликовано: London Springer London Imprint: Springer, 2013.
Серии:Advances in Computer Vision and Pattern Recognition,
Предметы:
Online-ссылка:Click here to view the full text content
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
Оглавление:
  • Introduction
  • Data Mining Paradigms
  • Run-Length Encoded Compression Scheme
  • Dimensionality Reduction by Subsequence Pruning
  • Data Compaction through Simultaneous Selection of Prototypes and Features
  • Domain Knowledge-Based Compaction
  • Optimal Dimensionality Reduction
  • Big Data Abstraction through Multiagent Systems
  • Intrusion Detection Dataset: Binary Representation.