Compression schemes for mining large datasets : a machine learning perspective /

As data mining algorithms are typically applied to sizable volumes of high-dimensional data, these can result in large storage requirements and inefficient computation times. This unique text/reference addresses the challenges of data abstraction generation using a least number of database scans, co...

Full beskrivning

Sparad:
Bibliografiska uppgifter
Huvudupphovsmän: Ravindra Babu, T. (Författare, medförfattare), Narasimha Murty, M. (Författare, medförfattare), Subrahmanya, S.V (Författare, medförfattare)
Institutionell upphovsman: SpringerLink (Online service)
Materialtyp: E-bok
Språk:English
Publicerad: London Springer London Imprint: Springer, 2013.
Serie:Advances in Computer Vision and Pattern Recognition,
Ämnen:
Länkar:Click here to view the full text content
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!
Innehållsförteckning:
  • Introduction
  • Data Mining Paradigms
  • Run-Length Encoded Compression Scheme
  • Dimensionality Reduction by Subsequence Pruning
  • Data Compaction through Simultaneous Selection of Prototypes and Features
  • Domain Knowledge-Based Compaction
  • Optimal Dimensionality Reduction
  • Big Data Abstraction through Multiagent Systems
  • Intrusion Detection Dataset: Binary Representation.