Realtime data mining : self-learning techniques for recommendation engines /

Describing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore...

Full description

Saved in:
Bibliographic Details
Main Authors: Paprotny, Alexander (Author), Thess, Michael (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Cham Springer International Publishing Imprint: Birkhäuser, 2013.
Series:Applied and Numerical Harmonic Analysis,
Subjects:
Online Access:Click here to view the full text content
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 04002nam a2200421 i 4500
001 vtls000115549
003 MY-ArUMP
005 20210731152605.0
006 m fq d
007 cr nn 008mamaa
008 140609s2013 gw | fs |||| 0|eng d
020 |a 9783319013213 
039 9 |a 201411212242  |b NY  |c 201406091441  |d NY  |c 201406091234  |d NY  |c 201406072221  |d NY  |y 201405091058  |z NY 
040 |a MYPMP  |b eng  |c MYPMP  |e rda 
100 1 |a Paprotny, Alexander.  |e author. 
245 1 0 |a Realtime data mining :  |b self-learning techniques for recommendation engines /  |c by Alexander Paprotny, Michael Thess. 
264 1 |a Cham  |b Springer International Publishing  |b Imprint: Birkhäuser,  |c 2013. 
300 |a 1 online resource (xxiii, 313 pages)  |b 100 illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied and Numerical Harmonic Analysis,  |x 2296-5009 
505 0 |a 1 Brave New Realtime World - Introduction -- 2 Strange Recommendations? - On The Weaknesses Of Current Recommendation Engines -- 3 Changing Not Just Analyzing - Control Theory And Reinforcement Learning -- 4 Recommendations As A Game - Reinforcement Learning For Recommendation Engines -- 5 How Engines Learn To Generate Recommendations - Adaptive Learning Algorithms -- 6 Up The Down Staircase - Hierarchical Reinforcement Learning -- 7 Breaking Dimensions - Adaptive Scoring With Sparse Grids -- 8 Decomposition In Transition - Adaptive Matrix Factorization -- 9 Decomposition In Transition Ii - Adaptive Tensor Factorization -- 10 The Big Picture - Towards A Synthesis Of Rl And Adaptive Tensor Factorization -- 11 What Cannot Be Measured Cannot Be Controlled - Gauging Success With A/B Tests -- 12 Building A Recommendation Engine - The Xelopes Library -- 13 Last Words - Conclusion -- References -- Summary Of Notation. 
520 |a Describing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore, it presents promising results of numerous experiments on real-world data. The area of realtime data mining is currently developing at an exceptionally dynamic pace, and realtime data mining systems are the counterpart of today's "classic" data mining systems. Whereas the latter learn from historical data and then use it to deduce necessary actions, realtime analytics systems learn and act continuously and autonomously. In the vanguard of these new analytics systems are recommendation engines. They are principally found on the Internet, where all information is available in realtime and an immediate feedback is guaranteed. This monograph appeals to computer scientists and specialists in machine learning, especially from the area of recommender systems, because it conveys a new way of realtime thinking by considering recommendation tasks as control-theoretic problems. Realtime Data Mining: Self-Learning Techniques for Recommendation Engines will also interest application-oriented mathematicians because it consistently combines some of the most promising mathematical areas, namely control theory, multilevel approximation, and tensor factorization. 
650 0 |a Mathematics. 
650 0 |a Computer science. 
650 0 |a Computer software. 
700 1 |a Thess, Michael.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319013206 
830 0 |a Applied and Numerical Harmonic Analysis,  |x 2296-5009 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-01321-3  |y Click here to view the full text content 
942 |2 lcc  |c BK-EBOOK 
949 |a VIRTUAITEM  |d 10011  |x 9 
999 |c 55824  |d 55824 
952 |0 0  |1 0  |2 lcc  |4 0  |7 0  |9 50923  |a FSGM  |b FSGM  |d 2021-07-31  |l 0  |r 2021-07-31  |w 2021-07-31  |y BK-EBOOK