Time-varying vector fields and their flows /

This short book provides a comprehensive and unified treatment of time-varying vector fields under a variety of regularity hypotheses, namely finitely differentiable, Lipschitz, smooth, holomorphic, and real analytic. The presentation of this material in the real analytic setting is new, as is the m...

Full description

Saved in:
Bibliographic Details
Main Author: Jafarpour, Saber (Author)
Corporate Author: SpringerLink (Online service)
Other Authors: Lewis, Andrew D.
Format: eBook
Language:English
Published: Cham Springer International Publishing 2014.
Series:SpringerBriefs in Mathematics
Subjects:
Online Access:Click here to view the full text content
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 02313nam a2200421 i 4500
001 vtls000122614
003 MY-ArUMP
005 20210731152905.0
006 m fo d
007 cr nn 008mamaa
008 150123s2014 enk f 00| 0 eng d
020 |a 9783319101392 
039 9 |a 201508181556  |b SMI  |c 201501231207  |d NY  |y 201501161907  |z NY 
040 |a MYPMP  |b eng  |c MYPMP  |e rda 
100 1 |a Jafarpour, Saber.  |e author 
245 1 0 |a Time-varying vector fields and their flows /  |c by Saber Jafarpour, Andrew D. Lewis. 
264 1 |a Cham  |b Springer International Publishing  |c 2014. 
300 |a 1 online resource (VIII, 119 pages) 9 illustration. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics  |x 2191-8198 
520 |a This short book provides a comprehensive and unified treatment of time-varying vector fields under a variety of regularity hypotheses, namely finitely differentiable, Lipschitz, smooth, holomorphic, and real analytic. The presentation of this material in the real analytic setting is new, as is the manner in which the various hypotheses are unified using functional analysis. Indeed, a major contribution of the book is the coherent development of locally convex topologies for the space of real analytic sections of a vector bundle, and the development of this in a manner that relates easily to classically known topologies in, for example, the finitely differentiable and smooth cases. The tools used in this development will be of use to researchers in the area of geometric functional analysis. 
650 0 |a Mathematics. 
650 0 |a Topological groups. 
650 0 |a Differentiable dynamical systems. 
650 0 |a Systems theory. 
700 1 |a Lewis, Andrew D. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition  |z 9783319101385 
830 0 |a SpringerBriefs in Mathematics  |x 2191-8198 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-10139-2  |y Click here to view the full text content 
942 |2 lcc  |c BK-EBOOK 
949 |a VIRTUAITEM  |d 10011  |x 9 
999 |c 60897  |d 60897 
952 |0 0  |1 0  |2 lcc  |4 0  |7 0  |9 54158  |a FSGM  |b FSGM  |d 2021-07-31  |l 0  |r 2021-07-31  |w 2021-07-31  |y BK-EBOOK