Peroxisomes and their key role in cellular signaling and metabolism /

Peroxisomes are a class of ubiquitous and dynamic single membrane-bounded cell organelles, devoid of DNA, with an essentially oxidative type of metabolism. Today it is known that fatty acid β-oxidation is a general feature of virtually all types of peroxisomes, but in higher eukaryotes, including hu...

Full description

Saved in:
Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: del Rio, Luis A.
Format: eBook
Language:English
Published: Dordrecht Springer Netherlands 2013.
Series:Subcellular Biochemistry 69
Subjects:
Online Access:Click here to view the full text content
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 03701nam a2200421 i 4500
001 vtls000113191
003 MY-ArUMP
005 20210731152954.0
006 m fo d
007 cr nn 008mamaa
008 131031s2013 ne | fs |||| 0|eng d
020 |a 9789400768895 
039 9 |a 201501291154  |b RAR  |c 201310311849  |d VLOAD  |y 201310081757  |z NY 
040 |a MYPMP  |b eng  |c MYPMP  |e rda 
245 0 0 |a Peroxisomes and their key role in cellular signaling and metabolism /  |c edited by Luis A. del Río. 
264 1 |a Dordrecht  |b Springer Netherlands  |c 2013. 
300 |a 1 online resource (XII, 350 pages.) 60 illustrations., 48 illustrations. in colour.  |b digital 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Subcellular Biochemistry  |x 0306-0225  |v 69 
520 |a Peroxisomes are a class of ubiquitous and dynamic single membrane-bounded cell organelles, devoid of DNA, with an essentially oxidative type of metabolism. Today it is known that fatty acid β-oxidation is a general feature of virtually all types of peroxisomes, but in higher eukaryotes, including humans, peroxisomes catalyze ether phospholipids biosynthesis, fatty acid α-oxidation, and glyoxylate detoxification, and in humans peroxisomes are associated with several important genetic diseases. Among the different new roles for human peroxisomes discovered in recent years are antiviral innate immunity, peptide hormone metabolism, brain aging and Alzheimer's disease, and age-related diseases. In fungi, new findings have broadened the number of secondary metabolites that are synthesized in peroxisomes, such as antibiotics and several toxins, and have evidenced their involvement in biotin biosynthesis, fungal development and plant pathogenesis. In plants, peroxisomes carry out different functions, apart from fatty acid β-oxidation, mainly including photorespiration, metabolism of reactive oxygen, nitrogen and sulfur species, photomorphogenesis, biosynthesis of phytohormones, senescence, and defense against pathogens and hervibores. Two important characteristics of peroxisomes are their metabolic plasticity and capacity of sharing metabolic pathways with other cell compartments. In recent years, a function for peroxisomes as key centers of the cellular-signaling apparatus which could influence the regulatory network of the cell has been postulated. The diverse key physiological functions that have been demonstrated for peroxisomes from different origins strongly indicate the interest of studying the role of peroxisomes as a cellular source of different signaling molecules. This book presents recent advances in the function and metabolism of peroxisomes from human, animal, fungal and plant origin and their metabolic interconnection with other cell compartments, showing the central role played by peroxisomes as cell generators of different signaling molecules involved in distinct processes of high physiological importance. 
650 0 |a Medicine. 
650 0 |a Biochemistry. 
650 0 |a Proteomics. 
650 0 |a Cytology. 
700 1 |a del Rio, Luis A. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789400768888 
830 0 |a Subcellular Biochemistry  |x 0306-0225  |v 69 
856 4 0 |u http://dx.doi.org/10.1007/978-94-007-6889-5  |y Click here to view the full text content 
942 |2 lcc  |c BK-EBOOK 
949 |a VIRTUAITEM  |d 10011  |x 9 
950 |a Biomedical and Life Sciences (Springer-11642) 
999 |c 61816  |d 61816 
952 |0 0  |1 0  |2 lcc  |4 0  |7 0  |9 54650  |a FSGM  |b FSGM  |d 2021-07-31  |l 0  |r 2021-07-31  |w 2021-07-31  |y BK-EBOOK