Homological mirror symmetry and tropical geometry /

The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the &qu...

Descripció completa

Guardat en:
Dades bibliogràfiques
Autor corporatiu: SpringerLink (Online service)
Altres autors: Catanese, Fabrizio, Kontsevich, Maxim, Pantev, Tony, Soibelman, Yan, Zharkov, Ilia, Castano-Bernard, Ricardo
Format: eBook
Idioma:English
Publicat: Cham Springer International Publishing 2014.
Col·lecció:Lecture Notes of the Unione Matematica Italiana 15
Matèries:
Accés en línia:Click here to view the full text content
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
LEADER 02839nam a2200457 i 4500
001 vtls000122466
003 MY-ArUMP
005 20210731153002.0
006 m fo d
007 cr nn 008mamaa
008 150121d2014 enk f 00| 0 eng d
020 |a 9783319065144 
039 9 |a 201503091524  |b SMI  |c 201501211841  |d NY  |y 201501161630  |z NY 
040 |a MYPMP  |b eng  |c MYPMP  |e rda 
245 0 0 |a Homological mirror symmetry and tropical geometry /  |c edited by Ricardo Castano-Bernard [and five others] 
264 1 |a Cham  |b Springer International Publishing  |c 2014. 
300 |a 1 online resource (XI, 436 pages) 43 illustration, 18 illustration in colour. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes of the Unione Matematica Italiana  |x 1862-9113  |v 15 
520 |a The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the "tropical" approach to Gromov-Witten theory, and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Geometry studies piecewise-linear objects which appear as "degenerations" of the corresponding algebro-geometric objects. 
650 0 |a Mathematics. 
650 0 |a Geometry, algebraic. 
650 0 |a Global differential geometry. 
700 1 |a Catanese, Fabrizio. 
700 1 |a Kontsevich, Maxim. 
700 1 |a Pantev, Tony. 
700 1 |a Soibelman, Yan. 
700 1 |a Zharkov, Ilia. 
700 1 |a Castano-Bernard, Ricardo. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition  |z 9783319065137 
830 0 |a Lecture Notes of the Unione Matematica Italiana  |x 1862-9113  |v 15 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-06514-4  |y Click here to view the full text content 
942 |2 lcc  |c BK-EBOOK 
949 |a VIRTUAITEM  |d 10011  |x 9 
999 |c 61935  |d 61935 
952 |0 0  |1 0  |2 lcc  |4 0  |7 0  |9 54769  |a FSGM  |b FSGM  |d 2021-07-31  |l 0  |r 2021-07-31  |w 2021-07-31  |y BK-EBOOK