An invitation to web geometry /

This book takes an in-depth look at abelian relations of codimension one webs in the complex analytic setting. In its classical form, web geometry consists in the study of webs up to local diffeomorphisms. A significant part of the theory revolves around the concept of abelian relation, a particular...

Fuld beskrivelse

Saved in:
Bibliografiske detaljer
Main Authors: Vitório Pereira, Jorge (Author), Pirio, Luc (Author)
Institution som forfatter: SpringerLink (Online service)
Format: eBog
Sprog:English
Udgivet: Cham Springer International Publishing Imprint: Springer 2015.
Serier:IMPA Monographs ; 2
Fag:
Online adgang:Click here to view the full text content
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!
LEADER 02715nam a2200445 i 4500
001 vtls000130549
003 MY-ArUMP
005 20210731153138.0
006 m fo d
007 cr nn 008mamaa
008 170426s2015 gw | fs |||| 0|eng d
020 |a 9783319145624 
039 9 |a 201901031509  |b NMN  |y 201704261306  |z NY 
040 |a MYPMP  |b eng  |c MYPMP  |e rda 
100 1 |a Vitório Pereira, Jorge.  |e author. 
245 1 3 |a An invitation to web geometry /  |c by Jorge Vitorio Pereira, Luc Pirio. 
264 1 |a Cham  |b Springer International Publishing  |b Imprint: Springer  |c 2015. 
300 |a 1 online resource (xvii, 213 pages)  |b 29 illustrations, 17 illustrations in colour 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a IMPA Monographs ;  |v 2 
505 0 |a Local and Global Webs -- Abelian Relations -- Abel's Addition Theorem -- The Converse to Abel's Theorem -- Algebraization -- Exceptional Webs.    . 
520 |a This book takes an in-depth look at abelian relations of codimension one webs in the complex analytic setting. In its classical form, web geometry consists in the study of webs up to local diffeomorphisms. A significant part of the theory revolves around the concept of abelian relation, a particular kind of functional relation among the first integrals of the foliations of a web. Two main focuses of the book include how many abelian relations can a web carry and which  webs are carrying the maximal possible number of abelian relations. The book offers complete proofs of both Chern's bound and Trépreau's algebraization theorem, including all the necessary prerequisites that go beyond elementary complex analysis or basic algebraic geometry. Most of the examples known up to date of non-algebraizable planar webs of maximal rank are discussed in detail. A historical account of the algebraization problem for maximal rank webs of codimension one is also presented. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Functions of complex variables. 
650 0 |a Differential geometry. 
700 1 |a Pirio, Luc.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319145617 
830 0 |a IMPA Monographs ;  |v 2 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-14562-4  |y Click here to view the full text content 
942 |2 lcc  |c BK-EBOOK 
949 |a VIRTUAITEM  |d 10011  |f 1  |x 9 
950 |a Mathematics and Statistics (Springer-11649) 
999 |c 63977  |d 63977 
952 |0 0  |1 0  |2 lcc  |4 0  |7 0  |9 55493  |a FSGM  |b FSGM  |d 2021-07-31  |l 0  |r 2021-07-31  |t 1  |w 2021-07-31  |y BK-EBOOK