Inverse Problems and Applications /

This proceeding volume is based on papers presented on the Third Annual Workshop on Inverse Problems which was organized by the Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, and took place in May 2013 in Stockholm. The purpose of this workshop w...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Tác giả của công ty: SpringerLink (Online service)
Tác giả khác: Beilina, Larisa (Biên tập viên)
Định dạng: eBook
Ngôn ngữ:English
Được phát hành: Cham : Springer International Publishing : Imprint: Springer, 2015.
Loạt:Springer Proceedings in Mathematics & Statistics, 120
Những chủ đề:
Truy cập trực tuyến:Click here to view the full text content
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Mục lục:
  • M.Yu. Kokurin and A. Bakushinsky, Interatively regularized Gauss-Newton methods under random noise
  • L. Beilina, N.T. Thanh, M.V. Klibanov, and J.B. Malmberg, Methods of quantitative reconstruction of shapes and refractive indices from experimental data
  • J.B. Malmberg, A posteriori error estimate in the Lagrangian setting for an inverse problem based on a new formulation of Maxwell's system
  • E. Karchevskii, A. Spiridonov, and L. Beilina, Determination of permittivity from propagation constant measurements in optical fibers
  • L. Angermann, Yu.V. Shestopalov, and V.V. Yatsyk, Eigenmodes of linearised problems of scattering and generation of oscillations on cubically polarisable layers
  • S. Soltani, R. Andersson, and B. Andersson, Time resolution in transient kinetics
  • L. Beilina and A. Eriksson, Reconstruction of dielectric constants in a cylindrical waveguide
  • L. Beilina and I. Gainova, Time-adaptive FEM for distributed parameter identification in mathematical model of HIV infection with drug therapy
  • L. Beilina and E. Karchevskii, The layer-stripping algorithm for reconstruction of dielectrics in an optical fiber
  • L. Beilina, M. Cristofol, and K. Niinimaki, Simultaneous reconstruction of Maxwell's coefficients from backscattering data.