Optimal boundary control and boundary stabilization of hyperbolic systems /

This brief considers recent results on optimal control and stabilization of systems governed by hyperbolic partial differential equations, specifically those in which the control action takes place at the boundary.  The wave equation is used as a typical example of a linear system, through which the...

Ամբողջական նկարագրություն

Պահպանված է:
Մատենագիտական մանրամասներ
Հիմնական հեղինակ: Gugat, Martin (Հեղինակ)
Համատեղ հեղինակ: SpringerLink (Online service)
Ձևաչափ: էլ․ գիրք
Լեզու:English
Հրապարակվել է: Cham Springer International Publishing 2015.
Շարք:SpringerBriefs in Electrical and Computer Engineering
Խորագրեր:
Առցանց հասանելիություն:Click here to view the full text content
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!
Նկարագրություն
Ամփոփում:This brief considers recent results on optimal control and stabilization of systems governed by hyperbolic partial differential equations, specifically those in which the control action takes place at the boundary.  The wave equation is used as a typical example of a linear system, through which the author explores initial boundary value problems, concepts of exact controllability, optimal exact control, and boundary stabilization.  Nonlinear systems are also covered, with the Korteweg-de Vries and Burgers Equations serving as standard examples.  To keep the presentation as accessible as possible, the author uses the case of a system with a state that is defined on a finite space interval, so that there are only two boundary points where the system can be controlled.  Graduate and post-graduate students as well as researchers in the field will find this to be an accessible introduction to problems of optimal control and stabilization.
Ֆիզիկական նկարագրություն:1 online resource (VIII, 140 pages) 3 illustration, 2 illustration in colour.
ISBN:9783319188904
ISSN:2191-8112