Optimal boundary control and boundary stabilization of hyperbolic systems /

This brief considers recent results on optimal control and stabilization of systems governed by hyperbolic partial differential equations, specifically those in which the control action takes place at the boundary.  The wave equation is used as a typical example of a linear system, through which the...

সম্পূর্ণ বিবরণ

সংরক্ষণ করুন:
গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Gugat, Martin (Author)
সংস্থা লেখক: SpringerLink (Online service)
বিন্যাস: বৈদ্যুতিন গ্রন্থ
ভাষা:English
প্রকাশিত: Cham Springer International Publishing 2015.
মালা:SpringerBriefs in Electrical and Computer Engineering
বিষয়গুলি:
অনলাইন ব্যবহার করুন:Click here to view the full text content
ট্যাগগুলো: ট্যাগ যুক্ত করুন
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!
LEADER 02840nam a2200457 i 4500
001 vtls000131759
003 MY-ArUMP
005 20210731153352.0
006 m fo d
007 cr nn 008mamaa
008 170426s2015 gw | fs |||| 0|eng d
020 |a 9783319188904 
039 9 |a 201905160909  |b SMI  |y 201704261353  |z NY 
040 |a MYPMP  |b eng  |c MYPMP  |e rda 
100 1 |a Gugat, Martin.  |e author 
245 1 0 |a Optimal boundary control and boundary stabilization of hyperbolic systems /  |c by Martin Gugat. 
264 1 |a Cham  |b Springer International Publishing  |c 2015. 
300 |a 1 online resource (VIII, 140 pages) 3 illustration, 2 illustration in colour. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Electrical and Computer Engineering  |x 2191-8112 
505 0 |a Introduction -- Systems that are Governed by the Wave Equation -- Exact Controllability -- Optimal Exact Control -- Boundary Stabilization -- Nonlinear Systems -- Distributions -- Index. 
520 |a This brief considers recent results on optimal control and stabilization of systems governed by hyperbolic partial differential equations, specifically those in which the control action takes place at the boundary.  The wave equation is used as a typical example of a linear system, through which the author explores initial boundary value problems, concepts of exact controllability, optimal exact control, and boundary stabilization.  Nonlinear systems are also covered, with the Korteweg-de Vries and Burgers Equations serving as standard examples.  To keep the presentation as accessible as possible, the author uses the case of a system with a state that is defined on a finite space interval, so that there are only two boundary points where the system can be controlled.  Graduate and post-graduate students as well as researchers in the field will find this to be an accessible introduction to problems of optimal control and stabilization. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a System theory. 
650 0 |a Calculus of variations. 
650 0 |a Mathematical optimization. 
650 0 |a Control engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition  |z 9783319188898 
830 0 |a SpringerBriefs in Electrical and Computer Engineering  |x 2191-8112 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-18890-4  |y Click here to view the full text content 
942 |2 lcc  |c BK-EBOOK 
949 |a VIRTUAITEM  |d 10011  |x 9 
950 |a Mathematics and Statistics (Springer-11649) 
999 |c 66421  |d 66421 
952 |0 0  |1 0  |2 lcc  |4 0  |7 0  |9 56811  |a FSGM  |b FSGM  |d 2021-07-31  |l 0  |r 2021-07-31  |w 2021-07-31  |y BK-EBOOK