Quantization and non-holomorphic modular forms /

This is a new approach to the theory of non-holomorphic modular forms, based on ideas from quantization theory or pseudodifferential analysis. Extending the Rankin-Selberg method so as to apply it to the calculation of the Roelcke-Selberg decomposition of the product of two Eisenstein series, one le...

पूर्ण विवरण

में बचाया:
ग्रंथसूची विवरण
मुख्य लेखक: Unterberger, Andre (लेखक)
स्वरूप: डेटाबेस
भाषा:English
प्रकाशित: Berlin Springer 2000.
श्रृंखला:Lecture notes in mathematics (Springer-Verlag) ; 1742.
विषय:
टैग : टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!
LEADER 02159cmi a2200433 a 4500
001 vtls000120395
003 MY-KaKUK
005 20210816100248.0
006 m fq d
007 cr |n|||||||||
008 151216s2000 gw fq d eng c
020 |a 9783540446606 (electronic bk.) 
020 |a 3540446605 (electronic bk.) 
020 |z 3540678611 
020 |z 9783540678618 
035 |a (OCoLC)932265369 
035 |a (OCoLC)ocn932265369 
039 9 |a 201512161539  |b SMT  |y 201410271449  |z NI 
040 |a MYPMP  |b eng  |e rda  |c MYPMP 
090 0 0 |a QC174.17  |b G46U61 2000 
100 1 |a Unterberger, Andre.  |e author 
245 1 0 |a Quantization and non-holomorphic modular forms /  |c Andre Unterberger. 
264 0 |a New York  |b Springer  |c 2000 
264 1 |a Berlin  |b Springer  |c 2000. 
300 |a 1 CD-ROM  |c 12 cm 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a computer disc  |b cd  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture notes in mathematics,  |x 0075-8434 ;  |v 1742 
504 |a Includes bibliographical references and indexes. 
520 |a This is a new approach to the theory of non-holomorphic modular forms, based on ideas from quantization theory or pseudodifferential analysis. Extending the Rankin-Selberg method so as to apply it to the calculation of the Roelcke-Selberg decomposition of the product of two Eisenstein series, one lets Maass cusp-forms appear as residues of simple, Eisenstein-like, series. Other results, based on quantization theory, include a reinterpretation of the Lax-Phillips scattering theory for the automorphic wave equation, in terms of distributions on R2 automorphic with respect to the linear action of SL(2,Z). 
650 0 |a Geometric quantization. 
650 0 |a Forms, Modular. 
830 0 |a Lecture notes in mathematics (Springer-Verlag) ;  |v 1742. 
949 |a VIRTUAITEM  |d 30000  |f 1  |x 701  |6 701005503  |a QC174.17 G46U61 2000 
942 |2 lcc  |c COMPFILE 
999 |c 92719  |d 92719 
952 |0 0  |1 0  |2 lcc  |4 0  |6 QC017417 G46 U61 02000  |7 0  |9 90290  |a PTSFP  |b PTSFP  |c 8  |d 2021-08-16  |l 0  |o QC174.17 G46U61 2000  |p 701005503  |r 2021-08-16  |t 1  |w 2021-08-16  |y COMPFILE