Quantization and non-holomorphic modular forms /
This is a new approach to the theory of non-holomorphic modular forms, based on ideas from quantization theory or pseudodifferential analysis. Extending the Rankin-Selberg method so as to apply it to the calculation of the Roelcke-Selberg decomposition of the product of two Eisenstein series, one le...
में बचाया:
मुख्य लेखक: | |
---|---|
स्वरूप: | डेटाबेस |
भाषा: | English |
प्रकाशित: |
Berlin
Springer
2000.
|
श्रृंखला: | Lecture notes in mathematics (Springer-Verlag) ;
1742. |
विषय: | |
टैग : |
टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!
|
LEADER | 02159cmi a2200433 a 4500 | ||
---|---|---|---|
001 | vtls000120395 | ||
003 | MY-KaKUK | ||
005 | 20210816100248.0 | ||
006 | m fq d | ||
007 | cr |n||||||||| | ||
008 | 151216s2000 gw fq d eng c | ||
020 | |a 9783540446606 (electronic bk.) | ||
020 | |a 3540446605 (electronic bk.) | ||
020 | |z 3540678611 | ||
020 | |z 9783540678618 | ||
035 | |a (OCoLC)932265369 | ||
035 | |a (OCoLC)ocn932265369 | ||
039 | 9 | |a 201512161539 |b SMT |y 201410271449 |z NI | |
040 | |a MYPMP |b eng |e rda |c MYPMP | ||
090 | 0 | 0 | |a QC174.17 |b G46U61 2000 |
100 | 1 | |a Unterberger, Andre. |e author | |
245 | 1 | 0 | |a Quantization and non-holomorphic modular forms / |c Andre Unterberger. |
264 | 0 | |a New York |b Springer |c 2000 | |
264 | 1 | |a Berlin |b Springer |c 2000. | |
300 | |a 1 CD-ROM |c 12 cm | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a computer disc |b cd |2 rdacarrier | ||
347 | |a text file |b PDF |2 rda | ||
490 | 1 | |a Lecture notes in mathematics, |x 0075-8434 ; |v 1742 | |
504 | |a Includes bibliographical references and indexes. | ||
520 | |a This is a new approach to the theory of non-holomorphic modular forms, based on ideas from quantization theory or pseudodifferential analysis. Extending the Rankin-Selberg method so as to apply it to the calculation of the Roelcke-Selberg decomposition of the product of two Eisenstein series, one lets Maass cusp-forms appear as residues of simple, Eisenstein-like, series. Other results, based on quantization theory, include a reinterpretation of the Lax-Phillips scattering theory for the automorphic wave equation, in terms of distributions on R2 automorphic with respect to the linear action of SL(2,Z). | ||
650 | 0 | |a Geometric quantization. | |
650 | 0 | |a Forms, Modular. | |
830 | 0 | |a Lecture notes in mathematics (Springer-Verlag) ; |v 1742. | |
949 | |a VIRTUAITEM |d 30000 |f 1 |x 701 |6 701005503 |a QC174.17 G46U61 2000 | ||
942 | |2 lcc |c COMPFILE | ||
999 | |c 92719 |d 92719 | ||
952 | |0 0 |1 0 |2 lcc |4 0 |6 QC017417 G46 U61 02000 |7 0 |9 90290 |a PTSFP |b PTSFP |c 8 |d 2021-08-16 |l 0 |o QC174.17 G46U61 2000 |p 701005503 |r 2021-08-16 |t 1 |w 2021-08-16 |y COMPFILE |