Study of atmospheric effect in free space optic propagation /
Free Space Optic (FSO) telecommunication system is Line of Sight (LOS) system which refer to transmission of visible and infrared beams that through to atmosphere to obtain the optical communication. This system uses laser to transmit the data in free space. However this system is vulnerable with va...
Збережено в:
Автор: | |
---|---|
Формат: | Дисертація Програмне забезпечення eКнига |
Мова: | English |
Опубліковано: |
Perlis
School of Computer and Communication Engineering
2010.
|
Предмети: | |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Резюме: | Free Space Optic (FSO) telecommunication system is Line of Sight (LOS) system which refer to transmission of visible and infrared beams that through to atmosphere to obtain the optical communication. This system uses laser to transmit the data in free space. However this system is vulnerable with variation of air turbulence particles that occurs in atmosphere. This thesis is aim to investigate the attenuation effect over the point-to-point FSO communication linkage. The study carried out under the tropical rainforest climate and the sample data is take at Perlis region that provide by Malaysia Meteorological Department (MMD). There two type of weather condition that capable to impair the FSO link performance. The first is rain weather where the rainfall occurs in tropical rainforest region almost everyday and has a high rain denseness rate. The second is haze weather which is usually contributed by smoke that produced from open burning of agriculture. The continuous burning and in wide area have produce the high density of haze to environment weather which create limited distance for visibility. Consequently, haze and rain can contribute to high atmospheric attenuation and predicted capable to impair the FSO link performance. Two approaches have been used in this research. |
---|---|
Фізичний опис: | 1 CD-ROM 12 cm |
Бібліографія: | Includes bibliographical references (pages 101-104) |