Optimization of crystalline nanocellulose (CNC) preparation condition from oil palm fronds (OPF) /

Malaysia is one of the largest palm oil producers in the world. About 90% of the biomass waste is produced from oil palm industries and oil palm fronds (OPF) consist of 57.96% of the biomass waste. OPF contain higher percentage of cellulose which can further break down into crystalline nanocellulose...

全面介绍

Saved in:
书目详细资料
主要作者: Chuah, Sin Ye
格式: Thesis 图书
语言:English
出版: Perlis, Malaysia School of Bioprocess Engineering, University Malaysia Perlis 2016
主题:
标签: 添加标签
没有标签, 成为第一个标记此记录!
实物特征
总结:Malaysia is one of the largest palm oil producers in the world. About 90% of the biomass waste is produced from oil palm industries and oil palm fronds (OPF) consist of 57.96% of the biomass waste. OPF contain higher percentage of cellulose which can further break down into crystalline nanocellulose (CNC) by acid hydrolysis. Optimization was done on the preparation condition of CNC to increases the yield of CNC produced. The effect of the reaction time, reaction temperature and sulfuric acid concentration on the yield of CNC were investigated by single-factor experiment (Preliminary Process) and the preparation conditions were optimized with response surface methodology. The obtained CNC were characterized by Fourier transform infrared spectroscopy and Scanning electron microscopy. The results showed the yield of CNC tend to increases when the reaction time, reaction temperature and sulfuric acid concentration is increases to 40 minutes, 60 C and 65% v/v, but reduced after that. Under optimal conditions, the yield and the crystallinity of CNC with the crystal form of cellulose is 30.35%.
实物描述:xii, 62 pages illustrations 30cm
参考书目:Includes bibliographical references