Compression schemes for mining large datasets : a machine learning perspective /

As data mining algorithms are typically applied to sizable volumes of high-dimensional data, these can result in large storage requirements and inefficient computation times. This unique text/reference addresses the challenges of data abstraction generation using a least number of database scans, co...

पूर्ण विवरण

में बचाया:
ग्रंथसूची विवरण
मुख्य लेखकों: Ravindra Babu, T. (लेखक), Narasimha Murty, M. (लेखक), Subrahmanya, S.V (लेखक)
निगमित लेखक: SpringerLink (Online service)
स्वरूप: ई-पुस्तक
भाषा:English
प्रकाशित: London Springer London Imprint: Springer, 2013.
श्रृंखला:Advances in Computer Vision and Pattern Recognition,
विषय:
ऑनलाइन पहुंच:Click here to view the full text content
टैग : टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!
विषय - सूची:
  • Introduction
  • Data Mining Paradigms
  • Run-Length Encoded Compression Scheme
  • Dimensionality Reduction by Subsequence Pruning
  • Data Compaction through Simultaneous Selection of Prototypes and Features
  • Domain Knowledge-Based Compaction
  • Optimal Dimensionality Reduction
  • Big Data Abstraction through Multiagent Systems
  • Intrusion Detection Dataset: Binary Representation.