Compression schemes for mining large datasets : a machine learning perspective /

As data mining algorithms are typically applied to sizable volumes of high-dimensional data, these can result in large storage requirements and inefficient computation times. This unique text/reference addresses the challenges of data abstraction generation using a least number of database scans, co...

Descrizione completa

Salvato in:
Dettagli Bibliografici
Autori principali: Ravindra Babu, T. (Autore), Narasimha Murty, M. (Autore), Subrahmanya, S.V (Autore)
Ente Autore: SpringerLink (Online service)
Natura: eBook
Lingua:English
Pubblicazione: London Springer London Imprint: Springer, 2013.
Serie:Advances in Computer Vision and Pattern Recognition,
Soggetti:
Accesso online:Click here to view the full text content
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne! !
Sommario:
  • Introduction
  • Data Mining Paradigms
  • Run-Length Encoded Compression Scheme
  • Dimensionality Reduction by Subsequence Pruning
  • Data Compaction through Simultaneous Selection of Prototypes and Features
  • Domain Knowledge-Based Compaction
  • Optimal Dimensionality Reduction
  • Big Data Abstraction through Multiagent Systems
  • Intrusion Detection Dataset: Binary Representation.